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The study describes a method of modelling axial-radial circulation in a tank with an axial impeller 
and radial baffles. The proposed model is based on the analytical solution of the equation 
for vortex transport in the mean flow of turbulent liquid. The obtained vortex flow model is tested 
by the results of experiments carried out in a tank of diameter 1 m and with the bottom in the 
shape of truncated cone as well as by the data published for the vessel of diameter 0·29 m with flat 
bottom. Though the model equations are expressed in a simple form, good qualitative and even 
quantitative agreement of the model with reality is stated. Apart from its simplicity, the model 
has other advantages: minimum number of experimental data necessary for the completion 
of boundary conditions and integral nature of these data. 

Among the great number of diverse approaches to the modelling of charge flow 
in mechanically agitated equipments the simplest quantitative models postulate 
potential liquid flow. A correspondent notion for the case of stirred charge is the 
concept of Rankin (potential) vortex\ used for the representation of tangential 
flow regime in an unbaffled tank. Further potential flow models for axial-radial 
liquid flow (in baffled vessels) have been published, e.g. by De Souza and Pike2 , 

Fort and coworkers3, and others4 ,5. In spite of considerable idealization of circum
stances in described system the models are favourable for their simplicity and de
scriptiveness. A more realistic approach to the modelling of real liquid flow, however, 
respects its vorticity. An explicit model of vortex flow for a tank without baffles 
has been published, e.g. by Martynov6 , another one for baffled tank, e.g. by Hosia
lek and Fort 7 • Among models based on the numerical solution of motion equation, 
e.g.8 ,9 may be mentioned. Although the possibilities of contemporary computer 
technique are undoubtedly great and the numerical algorithm sufficiently effective, 
such extensive calculations as in the above approaches may not - due to various 
causes - be possible to realize or even in all cases necessary. Our study shall be 
focused on the derivation and verification of the simple explicit model of the vortex 
flow of liquid, facilitating the presentation of the experimental data of flow in the 
major part of liquid volume above the level of axial impeller. 

* Part LXIII in the series Studies on Mixing; Part LXII: This Journal 50, 930 (1985). 
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THEORETICAL 

Let us consider the agitated system represented in Fig. 1. A vertical cylindrical tank 
with profiled (or even flat) bottom is filled with homogeneous newtonian liquid. 
Its turbulent flow regime is maintained by means of an axial high-speed impeller. 
The impeller is placed in the vessel axis, rotates with a constant frequency, creating 
a flow of liquid towards the vessel bottom. The tangential flow is suppressed by verti
cal baffles placed at regular intervals along the vessel wall and reaching from the 
liquid surface to the bottom. The origin of a system of cylinder coordinates (r, <p, z) 
shall be placed in the plane of the lower edge of the cylindrical part of the vessel. 

For statistically averaged flow field (so-called mean flow) the momentum transport 
is described by the Reynolds equation. In contrast to the laminar flow equation 
it is characterized - apart from the viscous (Newton) shear stress - by an additional 
(Reynolds) stress caused by turbulence10• Using Bussinesque's approach, also this 
stress may be considered proportional to the mean velocity gradient with a pro
portion coefficient called dynamic eddy (vortex) viscosity Pt. Under ordinary turbu
lent flow regime the value of this coefficient is some orders higher than in case of New
ton, i.e. J.tt ~ p. The influence of the so-called diffusion members of motion equa
tions may be considered - in case of turbulent flow - much more significant than 
it would result from the similarity theory applied to the equations of laminar flow. 

Let us now assume that Jlt is a constant scalar (a usual conception). In the case 
of a quasistationary two-dimensional flow, when we neglect the influence of inertial 
forces on the viscous and especially turbulent friction forces, we may obtain an equa
tion corresponding in its form to the Stokes simplification of motion equations11 

(l) 

where i/i is the Stokes stream function for the mean flow by 

_ oi/i 
W =--

r r oz ' 
oi/i 
r or (2a,2b) 

and EZ represents differential operator 

(3) 

Eq. (1) is a linear partial differential equation of the fourth order. The boundary 
conditions of its solution are introduced in Fig. 2. The aim of modelling is to obtain 
a description of liquid flow in the stirred tank, within the space limited by the planes 
z = zo(~ Hz + hm} and z = H (liquid surface). The liquid flow in the mixing 
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tank enters this space through the annulus (1"2' Df2) in the horizontal plane Zo and 
leaves it after circulation in the circle with diameter r2 lying in the same plane zoo 
The overall flowrate of liquid through the investigated space is characterized by the 
stream function value Vic = ViC(1"2' zo). It consists both of the so-called primary flow 
passing also through the impeller rotor region and of a certain flow fraction due to the 
momentum exchange with the primary flow (secondary or induced flow). The bound
ary between the primary and induced flows is characterized by the value of stream 
function Vip. To facilitate the application of boundary conditions in the solution 
of (1), the investigated space may be divided into cylindrical region A and regions B 
and C of the shape of hollow cylinder; the radii of the boundary cylindrical surfaces 
I" = r1 and I" = r3 being chosen so that region A and C might be passed by the 
primary flow only. 

In thus divided tank volume the fulfilment of the following boundary conditions 
shall be required: 
vessel axis/wall 

Vi = 0, 8wz /cl' = 0, I" = { 0 , Z E (zo, H) ; 
D/2 

(4) 
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Sketch of mixing system 
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FIG. 2 

Delineation of investigated volume and of its 
further division 
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boundary of regions A and B 

boundary of regions Band C 

plane of upper bases of regions A, B, C (liquid surface) 

plane of lower bases of regions A, B, C 

ilwz ~ 0, 
ar 

z = zo; 

awz 
-- = Q, r = r3 , Z = Zo; 
Dr 
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(7) 

(8a) 

(8b) 

(8e) 

(8d) 

Boundary conditions (4) to (6) indicate a linear dependence of function ifi on the 
axial coordinate as possible solution of (1) for all the three regions. Using the methods 
of separation of variables and variation of constants ll the solution of (1) may be 
obtained as 

(9) 

With regard to definition relations (2) equations for mean velocity components 
may also be expressed 

IV, = (air + br + cr In /" + dr3 ) e, (10) 

Wz = -(2b + c + 2c In I' + 4dr2 ) (I + ez). (11) 

Collection Czechoslovak Chern. Commun. [Vol. 50] [1985] 



2400 HoSiillek, Fort: 

In relations (9) to (11) five integration constants a, b, c, d, and e occur, which must be 
determined from the boundary conditions of A, B, C. 

The boundary condition for liquid surface (7) implies that the parameter e must 
in all regions fulfil 

e(X) = -lIH, X = A, B, C. (12) 

The determination of the remaining four parameters requires the solution of a system 
of four linear equations for each of the regions. For instance for A we may thus 
obtain 

a(A) = 0, 
1 H 

b(A) = "2--
rl H -zo 

lfip, c(A) = 0, d(A) = O. (13) 

The relations for the calculation of these parameters in regions Band C are summed 
up in Table 1. Given the values of lfip and Q, the so far introduced relations enable 
us to calculate the field of stream function Ifi values and/or of velocity components 
wr and Wz in any of the regions A, B, and C if the positions of the interfacing planes 
r = r1 and r = r3 are also given. Because, according to the real situation, the solu
tion should be continuous even on these boundaries, the introduced quantities 
must be specified by further conditions 

(14a,14b) 

By numerical solution of the last non-linear system of continuity conditions we may 
calculate the coordinates of cylindrical surfaces r1 and r3 corresponding to the given 
values lfip and Q. In case the boundary conditions of the solution are given by the two 
values of stream function lfip and lfic further conditions 

(15a,I5b) 

must be fulfilled. From conditions (14) and (15) we may calculate for these specific 
values lfip and lfic the values of parameters r1, r2' r3' and Q. 

EXPERIMENTAL 

The verification of the model is based on our published results 7 measured in the tank 
with conical bottom (further called system 1) and on the data12 for (standard) configuration 
with a fiat bottom (system 2). The basic features of both systems are apparent from Fig. 1. The 
impeller used had in all cases six blades with an inclination angle 45° and was in accordance 
with the respective standardl3 . There were four radial baffles in the vessel, their width being 
equal to a tenth of vessel diameter D. The cylindrical part of the vessel was filled with water 
up to the height H equal to D. 
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The m~asurements of velocity profiles took always place in an axial-radial plane lying in the 
middle between two neighbouring baffles. Some further geometrical and other parameters 
were specific for the given systems: 

System 1 (tank of diameter 1 m with conical bottom): The vertex angle of the bottom was p = 

= 1200 and the diameter of i Is smaller base Do (Fig. 1) amounted to one sixth of D. On the whole, 
two configurations have been investigated: one with an impeller of diameter dm = 0'333 m and 
rotal ional frequency n = 180 min -1, the other characterized by dm = 0'400 m and rotational 
frequency n = 125 min-I. The plane of lower edges of impeller blades was always coincident 

TABLE I 

Relations for calculaticn of model parameters in regions Band C 

Parameter 
( region) 

a(B) 

h(B) 

c(B) 

deB) 

a(C) 

h( C) 

c( C) 

d(C) 

Calculation formula 

[
.J; _ rj ri(r~ - ri) - 4ri In hh) Q] H 
'I' P ( 2 2)2 8 r3 - r l H - Zo 

r3 ri ---

ri1nrl)Q H 
"--~ ----

H 
Q---

H - Zo 

2 r; - ri H - Zo 

Q~
ri H - Zo 

Q H 
r; H - Zo 
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with that of the lower base of the cy lindrical part of the tank (height H2 = 0). For the deter
mination of the direction and value of the mean velocity a five-hole Pitot tube was used l4. The 
measurements yielded a progression of radial profiles of the components wr' W." and Wz for the 
values of axial coordinate z: (0-0'167-0'333) and 0'500 m. 

System 2 (flat-bottomed tank of diameter 0'29 m): The results of measurements by means 
of a three-hole Pitot tube in a flat-bottomed vessel (Fig. I - Po = 1800 and Ho = 0) have been 
published by Fort, Neugebauer, and Pastyfikoval2 . The investigated configurations include 
impellers of three different sizes (the diameter dm was 58,73, and 97 mm) at three rotational 
frequencies (ranging from 360 min -I for the largest impeller to I 300 min - 1 for the smallest 
one). The height of the impeller above the vessel bottom was in all cases H2 = 73 mm. 

The measurements yielded the radial profile of Wz in the distance of 10 mm from the plane 
of the upper edges of impeller blades. The individual sections of this profile were always repre
sented by regression lines. 

The survey of main geometrical parameters of both systems is given in Table II. 

TABLE II 

Survey of main geometrical parameters of individual configurations 

System D,mm H 2 ,mm Po' deg. Do,mm dm,mm "m.mm 

1 000 0 120 150 333 67 
1 000 0 120 150 400 80 

2 290 73 180 150 58 12 
2 290 73 180 150 73 15 
2 290 73 180 150 97 19 

TABLE III 

Survey of flow model parameters 

Parameter System 1 System 2 

Original Calculated dmlD = 0'333 dmlD = 0·400 dmlD = 0'200 dmlD = 0'333 

HID 
zolD 0'333 0'333 0'317 0'382 
TjIp/nd; 0·145" 0·115" 0'119 0'160 
If'clnd; 0'200 0'170 0·507 0'312 

rliD 0·316 0'297 0·140 0·237 
r31D 0·454 0·456 0·485 0·466 
Din 3-99 5·24 1'16 4·25 

" Estimation. 
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RESULTS 

To facilitate mutual comparison the results shaH be given in dimensionless form. 
The length coordinates (and - analogously - the dimensions of equipment) are 
normalized by the tank diameter 

riD, ziD. (16) 

Mean velocity components are given as the ratio to the velocity of impeller blade 
tips 

(17) 

(leaving out the coefficient n). The stream function IfJ will then be related to the value 
of the product of rotational frequency and of the cube of impeller diameter; the slope 
of the velocity profile Q to the impeller rotational speed, i.e. 

IfJlnd!, Qln. (18) 

The parameters of vortex flow model for the configurations of the mixing equipment 
denoted system L and system 2 are summed up in Table III (for the basic parameters 
see Table II). The remaining data in Table III represent the additionally calculated 
parameters: the delimination of boundaries between regions A, B, and C (radii r 1 

and r3 ) as well as the value of the slope Q. By substituting of the last mentioned values 
into relation (13) or into those in Table I we may obtain the numerical values of inte
gration constants a, b, c, d, and e in regions A, B, and C. The results of modeIIing 
of the axial component of mean velocity Wz for the level Zo are given in Figs 3 and 4: 
for system 1 they are directly compared with measurement results, whereas for system 
2, the theoretical curve is compared with the regression lines (dot-and-dash), 
by which the individual sections of measured profiles have been approximated 12. 

For system 1 Fig. 5 compares the model course of stream function in two axial 
planes with functions obtained directly from the experiments. And finally Fig. 6 
shows the calculated streamlines field for system 1 (smaller impeller). 

DISCUSSION 

The real nature of the flow in the mixing tank is very complex. The extent of simpli
fications adopted in the process of modelling does not - on the whole - differ from 
the state in current practice. Here we have in mind especiaIIy the assumption of the 
suppression of the tangential component of motion in favour of that in the axial
-radial plane by means of radial baffles, and the assumption of the axisymmetricaI 
flow. The fulfilment of the assumption of the quasistationary nature of the process 
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Comparison of radial profiles of stream function Iii in flow close to wall according to given model 
(solid line) to course determined from measurement results (dashed line) for system 1 
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may as well be considered an acceptable approximation of the real state of liquid 
(a random motion caused by turbulence and a periodical motion produced by the 
impeller blades are superimposed to the mean flow of liquid). The above limitations 
have radically simplified the mathematical description but at the same time they 
implicitely determine the extent of accuracy which may be expected from the model. 
Our next step has been to attribute the principal part of vorticity transfer to bigger 
aggregates of charge - vortices - neglecting at the same time the influence of iner
tial and eventually even molecular forces. Kotchin and coworkers1s have stated for 
instance that in modelling turbulent liquid flow the viscosity coefficient in diffuse 
members of motion equations must be considered even six orders higher than the 
value corresponding to the laminar flow. The accepted flow model (1) could then 
be solved much more generally in accordance with the method7 ; here, however, 
we have concentrated on finding the solution in the closed form of a simple mathe
matical function. The simplicity of solutions (9), (10), and (11) which makes the model 
descriptive and easily applicable, was the result of the choice of boundary conditions. 
Homogeneous boundary conditions (4) and (7) for the stream function on the 
boundaries of the agitated system (i.e. in the vessel axis, on its wall and on the liquid 
surface) are in keeping with the physical meaning of its function as the extent of the 
volumetric flow rate of liquid (a closed system with respect to the stirred liquid). 

FIG. 6 

Streamline field according to given model 
in system 1 
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The choice of mean velocity gradient in the above loci is rather more ambiguous. 
This holds mainly for the vessel wall (in the vessel axis we do not consider the 
influence of the impeller shaft due to its relatively small diameter). Here in reality 
the component of mean velocity gradient in the normal direction will have non-zero 
value and opposite sign than further in the charge flow, because of the influence of the 
solid wall to which the liquid sticks due to its viscosity (the maximum in the radial 
profile close to the wall, but not directly on it, has been mentioned e.g. by16). Hence, 
posing homogeneous boundary condition (4) we neglect the dimensions of the 
boundary layer, shifting the maximum of radial profile of Wz as far as the vessel wall. 
As the piston nature of the axial profile of wr has been postulated (see conditions (5) 
and (6), or solution (10», the negative slope of the radial profile of Wz indicates also 
the value of the non-zero component of mean velocity rotation. The maximum value 
of this gradient is, according to conditions (8), postulated in the point (r3' zo). 
This corresponds to the fact described e.g. byl7 that just on the interface of the 
prominent primary flow leaving the impeller and the neighbouring liquid powerful 
vortices appear, which are afterwards carried off by the flow and finally vanish by dif
fusion into the environment (Fig. 2). According to the model, the primary flow 
with a homogeneous (piston) profile emerges from the considered space (see condi
tion (8a) which is in keeping with the experimental data of reality). 

The plane of lower bases of regions A, B, and C has been specified only very vaguely. 
A qualitatively correct flow description by means of the proposed model may be 
attained in case the plane Zo is situated on the level of the centre of axial-radial 
circulation, i.e. in the point where the change of sign both in the radial profile of wr 
and in the axial profile of Wz occurs (or above it). In such case the field of values wr 
would have the same sign in the whole investigated space, which is just what the given 
model requires. The plane Zo should not be chosen above the level where the frac
tion of secondary flow may extent. Otherwise, some of the premises of the model 
ought to be modified (i.e. the division into regions and some boundary conditions). 
For the specific case of system 1 the plane Zo = 0·333 fulfilled the requirements 
most closely. In the nearest profile measured (z = 0·500 m) the model values of I{i 
are - in keeping with the reality - proportionally lower (Fig. 5). In system 2 we had 
to be satisfied with a single measured profile (respective Zo see Table III). The quanti
ties l{ip and l{ic are the only ones to be determined from the boundary conditions. 
These have been currently measured, especially l{ip. They are often assessed by means 
of a simple indicating particle method 18.19. When needed, the way of setting boundary 
conditions may be variously modified. E.g. for system 1 various l{ip values were 
tried, until the model was in keeping with the measured section of the velocity 
profile at the vessel wall. For the repeated employment of the model, the fairly dif
ficult calculation of radii r1 , r2 , and r3 and the slope Q may be carried out in advance 
for different values of the ratio l{ip!l{ic. The results in Fig. 7 show that with the in
creasing value of this simplex the radii "1' "2' and r3 mutually approach, i.e. the 
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volume of region B diminishes. Fig. 8 illustrates the relation among individual 
boundary conditions. Here we can see that with increasing ratio of the primary 
flow the absolute value of Q increases. This value is at the same time directly pro
portional to the total liquid flowrate and indirectly proportional to the cube of tank 
diameter D3. (Note: At given values of r1 and r3 the quantity Q may be expressed 
explicitely from condition (14b).) 

Now we shall compare the results of model application with reality. The direct 
comparison can be made in Fig. 3. It implies that in system 1 there is almost a perfect 
agreement in the ascending flow region close to the wall (but cpo the discussion 
of the calculation method). In the flow close to the vessel axis descending back 
to the impeller, the experimentally found flow rate values are higher than the model 
ones. This may be explained either by an error in the measurement method or by a pos
sible flow asymmetry caused by the baffles. From the results in Fig. 4 for system 2 it is 
however apparent that in this case the qualitative representation of "reality" by means 
of the model is much less accurate, especial1y in the flow close to the wal1: here the 
model assumes steeper radial profile of wz, especially for the smal1est impel1er used. 
This can - of course - be partly explained by the measurement error or by an error 
in statistic interpretation of the measured profile sections, but there may even be 
some deeper cause, for instance lower turbulence intensity in the smaller of the two 
mixing equipments (see the model assumption of neglecting the influence of inertial 

:}s 
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Radius of cylindrical surface separating 
regions A and B (r - 1'1) or Band C (r = r 3 ) 

and radial coordinates of change of flow 
direction from ascending to descending in re
gion B (I' ~ 1'2) in dependence on ratio 
ljipiv;c for given model 
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forces). In spite of these facts, the agreement between the data predicted and found 
may be considered sufficient. 

Thus we have verified the properties of the model in the description of radial 
profiles of Wz and l{i. For axial profiles of these quantities the model prescribes 
a simple linear dependence. In this case, there is a much smaller number of experi
mental data for a quantitative assessment. Starting from Fig. 5, however, we may -
even from this viewpoint - observe at least a qualitative agreement from the case 
of the stream function: e.g. in the profile corresponding to 1/4 of the model space 
height (z/ D = 0'500) the model for the alternative of the smaller impeller predicted 
values 13% higher than these assessed from the experiments in the first type of mixing 
equipment; the error in the case of smaller impeIIer was considerably smaller. The 
distribution of streamline field in Fig. 6 implies that the model description of the 
investigated volume is in keeping with current physical ideas: the continuity of stream
lines and their smooth transition across the region interfaces. 

CONCLUSION 

The study solved a simplified transport equation of vorticity for a baffled system 
with an axial high-speed impeller. From the obtained relations the fields of radial 
and axial mean veloc.ity components and the stream functions in the major part 
of the volume between the impeller and the liquid surface may be calculated. 
Model ideas have been tested by means of our own experiments or by the published 
data for different tank and impeller sizes (diameters 1 m and 0·29 m and the value 
of simplex dm / D ranging from 0·200 to 0'400, respectively), different shape of tank 
bottom (flat or conical) and the impeller rotational frequency ranging from 125 
min -1 to 1 300 min -1. A good agreement of the tested model with reality has 
been stated. For the numerical solution of the model relation only the primary 
flow rate and the total volumetric flow rate in the chosen region must be given. The 
main advantage of the proposed model is the simplicity of the relations obtained 
and their explicit character, which makes it descriptive and easily applicable. The 
model may be used either dir~ctly or with simple modifications according to the 
structure of the available experimental data. After some arrangements (using the 
auxiliary diagrams in repeated calculations) the computation may be carried out 
by means of an efficient pocket calculator. 

LIST OF SYMBOLS 

A region according to Fig. 2 
a integration constant (m3 s -1) 

B regions according to Fig. 2 
b integration constant (m s - 1) 

C region according to Fig. 2 
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c integration constant (m s -I) 
D mixing tank diameter (m) 
Do diameter of lower base of tank bottom in shape of truncated cone (m) 
d integration constant (m- I S-I) 

dm impeller diameter (m) 
E Z differential operator defined by Eq. (3) 
e integration constant (m -I) 
H height of liquid in cylindrical part of tank (m) 
Ho height of conical bottom (m) 
Hz height of lower edges of impeller blades abo Ie low('r edge of cylindrical part of tank (m) 
hnl impeller blade height (m) 
/I impeller rotaticnal frequency (s - I) 

radial coordinate (m) 
1"1 radius of cylindrical surface separating regions Band C (m) 
I"z radial coordinate of turn of flow from ascending to descending direction (m) 
/"3 radius of cyclindrical surface separating regions Band C (m) 
w liquid mean velocity (m s -I) 
X auxiliary variable 
z axial coordinate (m) 
'::0 plane of lower bases of regions A, B, C (m) 
fJo vertex angle of tank bottom (1) 

fl dynamic viscosity (kg m- I S-I) 

qJ tangential coordinate (I) 

IjI Stokes stream function (m 3 s -I) 

Q boundary condition defined by Eq. (8a) (S-I) 

Subscripts 

C total flow rate through given cross-sect ion 
P primary flow 

rad;al component 
I. axial componer.t 
'P tangential component 
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